
Aircraft Traffic Control with Reinforcement
Learning

*A project for the course CS 238: Decision Making Under Uncertainty

Aamir Rasheed
Computer Science
Stanford University

Stanford, CA
aamirar@stanford.edu

Ashar Alam
Mechanical Engineering

Stanford University
Stanford, CA

ashar1@stanford.edu

John Melloni
Computer Science
Stanford University

Stanford, CA
jmelloni@stanford.edu

Ron Domingo
Electrical Engineering

Stanford University
Stanford, CA

rdomingo@stanford.edu

Abstract—A critical component of air traffic control (ATC) is
the task of directing airplanes to takeoff and land at airports
without collisions. It is a complex task involving a sequence
of complex decisions. We simulate a 2D version of ATC and
describe an approach to train an agent that can autonomously
route planes to their destinations without collisions. We frame
the problem as a Markov decision process and utilize the SARSA
reinforcement learning algorithm to manipulate the trajectories
of the planes to reach their desired destinations without collisions.
Our environment features uncertainties in the form of variability
of spawn locations, number of planes, initial heading direction
of the planes, and unknown destination locations.

Index Terms—Air Traffic Control, Markov Decision Processes,
Reinforcement Learning, Decision Making Under Uncertainty

I. INTRODUCTION

Air traffic control (ATC) has been an integral part of the
aviation industry since the early 1920s. Initially, it was used
for military aircraft, but with the advent of passenger and
cargo planes, air traffic increased over time and ATC evolved
into its current form. ATC not only coordinates take-offs and
landings of airplanes, but also maintains an oversight on planes
throughout their journeys.

With increasing air traffic and instances of mid-air colli-
sions, the FAA (Federal Aviation Administration) developed
a mid-air collision avoidance system known as TCAS (Traffic
alert and Collision Avoidance System) in 1981. A new system
called ACAS-Xu (Airborne Collision Avoidance System) is
currently being developed which utilizes advancements in
computer science and dynamic programming to generate alerts
[1].

Our general approach is to send planes on straight-line
trajectories towards their destinations, with an ACAS-like,
SARSA-based agent that takes over when two planes are in
danger of collision.

II. RELATED WORK

Reinforcement learning and dynamic programming have
been utilized extensively in solving the problems of ATC.
One such issue with Markov decision processes (MDPs) and
partially observable Markov decision processes (POMDPs) is

the size of the state space used for collision avoidance. In
Policy Compression for Aircraft Collision Avoidance Systems,
Julian Kyle et al, discuss several avenues they explored for
reducing the state space [1]. To illustrate this point, here is
an introduction of a novel system: ”A variant [of a collision
avoidance system] for unmanned aircraft, ACAS Xu, uses
dynamic programming to determine horizontal or vertical
resolution advisories in order to avoid collisions while min-
imizing disruptive alerts.” By keeping track of 7 discretized
sensor measurements, including distance, angle, and velocity
of ownship and intrudership, the ACAS Xu logic is left with
120 million different discrete states [1]. Even by limiting the
action space to only 5 actions, that results in 600 million
state action pairs to be used in the look-up table. Thanks
to the work of Professor Kochenderfer and others, they were
able to downsample, compress identical states, and even store
the values in IEEE half-precision format with no loss in
performance [2]. Kyle and others introduced Origami Com-
pression and Deep Neural Network Compression algorithms
to further reduce the magnitude of the look-up table. Origami
Compression involves decomposing the massive look-up table
into a ”set of lower-dimensional tables” that can then be
reduced even further via similarity metrics and symmetry
exploitation [1]. Deep Neural Network Compression approach
learns a ”complex non-linear function approximation of the
table.” With these new algorithms, they were able to give a
more accurate compression than current approaches, and even
increase runtime speed in the case of Origami Compression
[1].

III. ENVIRONMENT

We decided upon using PyGame for our visualization en-
vironment. PyGame is a set of Python modules used for
programming video games [3]. More specifically, we used an
open source air traffic control game built on top of PyGame
called python-air-traffic-control [4].

Fig.1 is an example of a typical gameplay where multiple
planes try to reach multiple destinations while avoiding ob-



Fig. 1. Our PyGame Visualization Environment.

stacles. Each plane begins with a straight line trajectory to
its destination airport but has the ability for waypoints to be
added along that trajectory to ensure that no planes collide
into other planes or static objects. The goal of the game is to
ensure that all planes can reach their destination without any
collisions. Normally, the game is played with a human user
manually clicking individual planes and inputting their next
waypoints. Therefore, many modifications were made to the
game to enable our autonomous agent to have full control and
be able to learn from previous runs. The modifications made
can be split into two categories: (1) Game Modifications and
(2) Interface Modifications.

A. Game Modifications

First, all aspects of the original game that were outside of
the actual gameplay, such as the start menu, were stripped to
allow for continuous training over multiple episodes without
interruption. The game was also modified so that it has to be
iteratively stepped through in order to play. This allowed us
to generate and execute our desired actions at every timestep
of the game. Custom functions were written within the game
code so that, with each timestep, the game returns the current
list of active aircraft, the rewards for each aircraft, and the list
of aircraft pairs in potential collision courses - all of which
constitute the information our MDP needs to make decisions
about the game state.

B. Interface Modifications

We created an interface that wraps around the game code
and allows us to programmatically control the game, train
our model, and actively make decisions given the game
state. Our interface enables us to modify the default game
configurations that detail the number of planes, destinations,
and obstacles per game, as well as the hyperparameters of
the SARSA algorithm, such as learning rate, discount factor,
and exploration probability. The interface is also the controller
that steps through the game, receiving the state information
from each game timestep, processing the data, then generating

an action based on the trained model. With each timestep,
the interface calculates the best action for every active plane
and modifies the game plane objects to add any waypoints it
deems necessary before initiating a new timestep to continue
the game. Given this interface, we could then create an agent
to autonomously handle the task of air traffic control.

IV. GENERAL APPROACH

The problem of optimally routing planes without collisions
while taking into account uncertainty of new plane spawns can
become a complicated and computationally expensive task. To
simplify the problem, we have instead chosen to use a two-
pronged approach:

1) If there are other planes within a specified radius, deploy
a collision-avoidance agent to closest two planes until
they are clear of each other, or a plane reaches a
destination.

2) Otherwise the path is clear, therefore make a beeline for
the destination.

This approach allows us to mimic the TCAS/ACAS system
for collision avoidance while keeping the complexity of the
problem at a minimum.

The following section describes step 1 of this approach: the
agent that deploys to both planes. For this agent, we chose to
use SARSA, a model-free reinforcement learning algorithm.
The following sections describe this algorithm’s structure.

V. MDP MODEL

A. MDP Architecture

Similar to the ACAS/TCAS system, our task was to generate
the optimal policy that a plane could follow to avoid a collision
with an intruder aircraft nearby. The MDP formulation for
SARSA requires a definition of the state space, action space,
and reward model, which we will describe next.

B. State Space

Our state space formulation is inspired by the ACAS-Xu
system and measurements real aircraft might receive about
other nearby aircraft. We obtain these ’measurements’ in
real time and update the agent’s states accordingly. Table
1 describes our state space. We have discretized the

TABLE I
STATE SPACE

State variable Description # of elements
d Distance to intruder 50
ρ Angle to intruder 36
θ Relative heading of intruder 36

measurements into buckets to reduce the size of our state
space and compress the look-up table. The angle to intruder
and relative heading of intruder are each 36 buckets of
10 degree intervals, representing the full 360 degrees. The
distance to the intruder is measured in pixels, where 50 is the
threshold radius for deploying the agent. The full size of our
state space is 64,800, which is a fairly compact representation

2



Fig. 2. Visual description of state space (inspired by ACAS-Xu formulation).

compared to the 120 million states needed for ACAS-Xu.

C. Action Space

Our action space consists of going straight (N), taking a
medium turn (ML, MR), or taking a hard turn (HL, HR).

To translate this to the pixel space, we utilize the 8 pixels
immediately surrounding an aircraft’s center pixel. N cor-
responds to setting the next direction vector of the aircraft
to the top center pixel. In a similar fashion, ML and MR
correspond to the top left and top right pixels, while HL and
HR correspond to the left center and right center pixels. The
action itself is set 50 pixels away in the direction of the action’s
direction vector. A visualization is shown below.

TABLE II
ACTION SPACE

Action Description
N Maintain course

HL Hard left
ML Medium Left
MR Medium Right
HR Hard Right

As was done in [1], we have chosen to limit our action
space to 5. This results in a state-action pair look-up table of
324,000 which was tractable for our processing power.

D. Reward Model

The selection of a reward function used in our dynamic
programming algorithm is a significant design choice. It allows
us to control which information is propagated from past
experiences to influence present decisions. Our reward model
is dependent on the state variables. Ultimately, we decided to
focus on two components, distance and destination.

For distance, we want the negative reward to increase
quadratically as intruder planes became closer to our ownship.
This means our algorithm would be less likely to choose
actions that resulted in a decrease of distance between any

two planes. Equation (1) describes the function used. radius
is the threshold distance of 50 for deploying the agent and
closest distance is the distance between any plane and the
plane it is closest to. By using the scaling factor in the
denominator, it allows us to vary the negative reward from
0 when the planes are 50 pixels away, to 500 when the planes
are about to collide.

We also chose to create a positive reward for reaching a
destination so that the agent would be motivated to route
the plane to a destination in spite of a nearby intruder. To
handle this, we created a function called getDistanceToGo()
that calculated the distance from the current ship to its
destination. Equation (2) describes our reward for approaching
a destination. In the below equation, distanceToGo is the result
of getDistanceToGo().

intruder reward =
−(radius2 − closest distance2)

(radius2/500)
(1)

destination reward = 100− distanceToGo (2)

Both of these rewards are distributed to all agents per timestep
in the update function of our learning algorithm. Additionally,
to account for planes that have already reached the destination,
we propagate the reward of reaching the terminal state back
throughout the look-up table.

VI. IMPLEMENTATION

The basis for our implementation primarily comes from
Professor Kochenderfer’s Decision Making under Uncertainty
textbook [5]. Initially, we thought that we should use a model-
based learning algorithm as our transitions between states were
deterministic. However, in this project, we were focusing on
avoiding collisions and could not predict which actions would
lead to collisions and which ones would not.

Since we wanted our agent (planes) to learn how to avoid
collisions through actual experience rather than through an
unknown collision model, we decided on adopting a model-
free learning approach using Temporal Difference [5]. This
also enabled us to introduce stochastic elements and a large
sequence of state-action pairs. Temporal Difference algorithms
enable an agent to learn through every action it takes by
updating the knowledge of the agent on every time step
rather than on every episode (reaching goal/end state). This
knowledge update is the update of the estimate of the utility
given by:

New ←− Old+ α(Target−Old) (3)

Here the new estimate is proportional to the difference in target
utility and the previous estimate. α in the above equation
is called the learning rate and is representative of the step
size applied in the update with values between 0 and 1.
https://www.overleaf.com/project/5de02ed84df51a0001888f0d

3



A. Algorithm Used - SARSA

We chose SARSA as our reinforcement learning algorithm
over Q-learning as SARSA uses the actual action taken at st+1

to update Q values instead of maximizing over all possible
actions as done in Q-learning. SARSA is an on-policy learning
algorithm, meaning it learns the value of the policy being
carried out by the agent, including the exploration steps, while
the policy continues to be followed.

Algorithm 1: SARSA

1 Initialize Q(s,a) for all s ∈ S and a ∈ A
2 t ←− 0
3 repeat for each episode
4 s0 ←− initial state
5 Choose A from S based on policy derived from Q

(ε-greedy)
6 repeat for each step of episode
7 Choose action at based on policy derived from

Q (ε-greedy)
8 Observe new state st+1 and reward rt
9 Q(st, at)←− Q(st, at) +

10 α(rt + γmaxaQ(st+1, at)−Q(st, at))
11 s ←− st+1; a←− at+1

12 until until s reaches goal state;
13 until episodes over;

B. SARSA Implementation

We implemented our MDP structure as a class in Python
3.7. We will briefly describe how this algorithm helps to train
our agents to avoid collision between each other (the ordered
list correspond to line numbers in the above algorithm):

1) We initialize the Q table as an empty dictionary.
2) The first episode starts alongside the start of the game

with multiple planes spawning in random locations
heading towards a destination airport (each episode
represents one instance of training without collision).

3) We save an offline policy look-up table (Q table) after
simulation of every 25 episodes which may be used later.

4) We initialize all unknown states with a 0 vector.
5) We choose an action based on an already trained look-up

table saved previously.
6) We run the game in timesteps permitted by the environ-

ment.
7) We train our MDP for planes which are within the

collision radius and choose an action (turning in a
particular direction) using an exploration vs. exploitation
strategy.

8) We observe the next state and reward (low reward for
maneuvers, which might lead to collision) gained after
taking the previous action and ending up in the next
state.

9) Based on the previous action, state and reward; we
update our Q - values.

10) Finally, we update the state and action of the planes
11) We repeat this until the planes reach their destination

(goal state) or until there is a collision.
12) We train the model until the desired number of episodes,

and the learned policy can be saved in the form of a Q-
table.

C. Simulation Configuration

We have modified our simulation environment such that
it can accept various parameters. Thus, we can run our
simulation with various configuration parameters to train our
agents under various conditions for regressive training (similar
to various difficulty levels for games). Following are the
parameters, which can be varied during training:

• number of planes
• number of spawnpoints
• number of destinations
• number of obstacles
• load a previously trained q-table
• learning rate
• discount factor
• exploration probability

VII. RESULTS

A. Experiments

To measure the performance of our RL agent, we simulated
our game environment with the following parameters: one
airport destination, no obstacles, 25 planes, and a varying
number of episodes. Each episode is a run of the program
where the agent accumulates points until two planes collided.

We compared the performance of our agent against two
benchmarks - a random policy agent and a straight line
following agent. Figures 3-6 show the comparison between
the performance of the agents.

B. Performance

1) Random Policy Agent: We used a random policy fol-
lowing agent as one of our bench-marking agents. This agent
takes one of the possible actions at random to avoid collisions
when near other planes. As we can see in Fig. 3 , this agent
shows a peak score in the beginning. Since, the airplane spawn
events are random; this introduces some chance events with
very sparse plane density. This might be an explanation for
an alienated spike seen in the beginning. We count this as the
”burn-in” time of our environment.

We can see that the scores average to around 30 for the
random policy event as random policy should produce similar
scores when averaged over a bunch of episodes. Moreover, the
reason for these low scores is that the random policy agent
doesn’t learn to improve its results over time.

2) Straight Line Following Greedy Agent: We used a
straight line following agent as another of our bench-marking
greedy agents. This agent takes the straight line trajectory to
their destination regardless of the impending collisions. As we
can see in Fig. 4, this agent shows some peak scores during
its run. This can again be attributed to the burn-in time of our

4



Fig. 3. Average scores for baseline random agent over 500 episodes.

environment. These spawn events happen at random and are
sparsely distributed across the curve.

We can see that the scores average to around 100 for this
agent as this agent is focused on reaching the destination
without caring about the collision. Due to this aggressive
maneuver; many times one or two planes in the episodes reach
their destination; raising the score above the random policy
agent’s score. Thus, this greedy agent aims to maximize reward
but fails to do better than our agent because of the failure to
learn from the collisions.

Fig. 4. Average scores for baseline greedy agent over 500 episodes.

3) SARSA Agent: We trained our SARSA agent with 25
planes to follow a single airport destination. Table III below
illustrates the different parameters used while training the
SARSA agent.

TABLE III
SARSA AGENT PARAMETERS

Fig # # of planes α γ exploration probability
5 25 0.5 0.9 0.5 (reduces over time)
6 25 0.5 0.9 0.1

First, we trained the agent for 125 episodes with 25 planes,
a learning rate of 0.5 and a discount factor of 0.9. In this case,
we started with an exploration probability of 0.5; which we
reduced by 10% every 10 episodes. The reason for doing this
is that we wanted to start with more exploration and gradually
reduce the exploration to start exploiting the knowledge gained
from our Q-Tables.

As you can see in Fig. 5, our SARSA agent has an average
score of around 300, which is 10 times better than the average
score for the random agent and about 3 times better than the
greedy agent.

Fig. 5. Average score for SARSA agent over 125 episodes.

Following the previous training instance; we trained the
agent for 500 episodes with 25 planes, a learning rate of
0.5 and a discount factor of 0.9. In this case, we used an
exploration probability of 0.1; since we wanted to aggressively
exploit our learned policy.

As you can see in Fig. 6, our SARSA agent converges to an
average score of about 300 with a steadily increasing trend for
scores. This shows again that our SARSA agent is 10 times
better than the average score for the random agent and about
3 times better than the greedy agent.

TABLE IV
AVERAGE SCORES OF VARIOUS AGENTS

Agent Average Score
baseline - random agent 30
baseline - greedy agent 100

sarsa agent 300

5



Fig. 6. Average score for SARSA agent over 500 episodes.

VIII. CONCLUSION

In this paper, we presented a reinforcement learning ap-
proach to designing an aircraft collision avoidance system
similar to what is used in air traffic control. We used a
PyGame environment to simulate a simplified version of
this scenario and modeled our agent as an MDP running a
SARSA algorithm. Our SARSA agent was able to achieve
reasonable success in collision avoidance compared to our
baseline agents. Our RL agent had consistently better scores
once it had learned from its initial episodes.

There still remains a lot of room for improvement and
development for our agent. We can add actions to our agents
such as an option to reduce or increase the speed along with
an option to change directions. Also, we did not have enough
time to run with various configurations, which we had planned
with our simulator. Future work might involve training our RL
agent with different obstacles and multiple airport destinations
with often crossing paths.

There have been a lot of recent advances in Deep Re-
inforcement Learning as discussed in the lectures [5]. It
would be interesting to observe how our aircraft collision
avoidance model performs under deep neural network methods
for reinforcement learning. Another extension for our project
could be to model our agent using a POMDP approach instead
of an MDP by introducing state uncertainty along with noisy
measurements.

Our current implementation involves simulation based learn-
ing, which we may modify in the future to learn without
running the simulation; thus, making the training process
faster. Currently, we are limited by the frame rendering rate
for running episodes. We could also try other RL algorithms
instead of SARSA, or even implement SARSA-Lambda to
increase reward propagation. An interesting learning case
could be to train our agent alongside the greedy agent to
improve our agent’s performance against greedy and smart
agents at the same time.

IX. CONTRIBUTIONS

Initial project idea, design, and scoping was pioneered by
Aamir. John and Ashar implemented the SARSA reinforce-
ment learning algorithm in Python and wrote a majority of
the paper. Ron and Aamir modified the PyGame environment,
with Ron handling the majority of the required programming.
All members trained either a baseline model or SARSA agent.

REFERENCES

[1] Julian, Kyle & Lopez, Jessica & Brush, Jeffrey & Owen, Michael &
Kochenderfer, Mykel. (2016). Policy compression for aircraft collision
avoidance systems. 1-10. 10.1109/DASC.2016.7778091.

[2] M. J. Kochenderfer and N. Monath, “Compression of optimal value func-
tions for Markov decision processes,” in Data Compression Conference,
2013.

[3] “News,” pygame.org. [Online]. Available: http://www.pygame.org/. [Ac-
cessed: 04-Dec-2019].

[4] https://github.com/scotty3785/python-air-traffic-control
[5] M. J. Kochenderfer, “Model Uncertainty” in Decision Making under

Uncertainty: Theory and Application, MIT Press, 2015
[6] https://github.com/aamirrasheed/air-traffic-control-AI

6


